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SEMI-MAJOR AXIS KNOWLEDGE AND GPS ORBIT DETERMINATION

J. Russell Carpenter' and Emil R. Schiesser’

In recent years spacecraft designers have increasingly sought to use onboard Global Po-
sitioning System receivers for orbit determination. The superb positioning accuracy of
GPS has tended to focus more attention on the system's capability to determine the
spacecraft's location at a particular epoch than on accurate orbit determination, per se.
The determination of orbit plane orientation and orbit shape to acceptable levels is less
challenging than the determination of orbital period or semi-major axis. It is necessary to
address semi-major axis mission requirements and the GPS receiver capability for orbital
maneuver targeting and other operations that require trajectory prediction. Failure to de-
termine semi-major axis accurately can result in a solution that may not be usable for tar-
geting the execution of orbit adjustment and rendezvous maneuvers. Simple formulas,
charts, and rules of thumb relating position, velocity, and semi-major axis are useful in
design and analysis of GPS receivers for near circular orbit operations, including rendez-
vous and formation flying missions. Space Shuttle flights of a number of different GPS
receivers, including a mix of unfiltered and filtered solution data and Standard and Pre-
cise Positioning Service modes, have been accomplished. These results indicate that
semi-major axis is often not determined very accurately, due to a poor velocity solution

and a lack of proper filtering to provide good radial and speed error correlation.
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INTRODUCTION

For most people familiar with celestial mechanics, the Keplerian elements are among the most
intuitive of the various sets used to describe orbital motion. However, in the modern era, orbit
determination has mostly been accomplished using Cartesian coordinates. Cartesian parameters
in recent years are also used in Global Positioning System (GPS) orbit determination. GPS re-
ceivers have the ability to determine accurate instantaneous position, and in some cases ade-
quately accurate instantaneous velocity, but the determination of a state vector useful for state

prediction, maneuver planning, etc., is another matter.

Orbital state determination and prediction accuracy depends on, among other factors, the error in
force models used rather than on the size of the forces affecting spacecraft motion. For near-
circular orbits, the error in state prediction is due chiefly to initial orbital period or semi-major
axis error, and imperfect force models used in prediction. The contributions from spacecraft
venting, uncoupled attitude control thrusting, atmospheric drag, and solar radiation pressure
force model errors are dependent on the type of vehicle, orbital characteristics, and the prediction

interval. For some orbital applications in which gravitational field error is of prime interest, it is

necessary to consider the effect of tides.

The accuracy with which orbital period can be determined depends on measurement type and
geometry, and the error associated with force models used in the navigation process. Traditional
satellite orbit determination uses measurements, such as range and Doppler, from ground track-
ing stations or tracking and data relay satellites. It is necessary to use data spread over relatively

long arcs (3/4 to several revolutions) from these sources to accurately determine the orbit since
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the measurements are not continuous and relate to only a portion of the state at a time. GPS pro-
vides continuous measurements that relate to all components of the state at a time so that, if de-
sired, accurate local instantaneous position and velocity may be determined with a low order
gravitational field model and a filter with a short memory. Such a solution might not provide
accurate orbit state prediction since only a small portion of the orbit is measured. The accuracy
may be improved through the use of a high-order gravitational field for both state determination

and prediction, or as for traditional processes, a low order field but with a much longer filter

memory.

Despite these complications, relatively simple means were developed, at least as far back as the
1960s, for the assessment of state prediction error due to initial state vector error and the effect of
unmodeled forces. The intent of this paper is to expose long-standing back-of-the-envelope
analyses of the orbital period error of an initial state vector, as reflected by semi-major axis error.
The variation (osculation) in semi-major axis due to the non-spherical earth gravitational field is
not relevant to the subject of the paper, assuming that an adequately accurate earth gravitational

field model is used for the chosen navigation process.

Coordination of Position and Velocity

Coordinated position and velocity estimates are required to determine orbit orientation, shape
and period or semi-major axis (SMA). The error in predicted along-track position depends on
the error in orbital period or the error in SMA, as affected by the proper coordination of position

and velocity knowledge. These errors in position and velocity can be considered to be knowl-



edge errors in the current orbit, or maneuver execution errors created in trying to achieve an orbit
change. Kepler discovered that for an ideal orbit, the square of the period is proportional to the
cube of the semi-major axis. Letting 7, denote the period, and a denote the SMA, Kepler's law

may be written'
T, =2n %, (0

where p = GM, the product of the gravitational constant, G, and the planetary mass, M. Eq. (1)
may be used to establish a relationship2 between a variation in da, the nominal SMA, and a

variation in orbital period, 87):

a
STP =37t\/£6a. 2)

Based on the principle of conservation of energy, the sum of kinetic and potential energy,
-w/(2a), i1s a constant' in the absence of contact forces, such as drag, vents, or maneuvers. Thus,
SMA knowledge is also an indication of knowledge of the orbit’s energy. Letting v denote ve-

locity magnitude and r position magnitude, the energy integral may be written
1 2 v?
—=Z- )
’

from which the following variational equation is derived:

%5a=%5r+&6v. C))

a r n

Eq. (3) is based on the assumption that the earth is spherical and the orbit is a circle or ellipse.

For actual orbits, the J, oblateness term causes variations on the order of a few kilometers
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throughout a revolution compared to a spherical Earth orbit. Variation in Earth mass distribution
beyond the J, Earth flattening results in additional but smaller departures from a conic orbit.
Transformation from instantaneous “osculating” orbit elements to so-called mean element sets is
often useful. However, this paper is primarily concerned with the analysis of variations in the
osculating semi-major axis, which is derived from the instantaneous position and velocity, and

variational analysis can be performed using Keplerian equations.

Many orbits of practical interest, such as low Earth orbits (LEO) and geosynchronous Earth or-
bits (GEO), are nearly circular. For a circular orbit, a=r, and from Eq. 3) v= (p/r)m. With

these assumptions, Eq. (4) simplifies to Eq. (5):
8a=25r + Z6v (5)
v

It is possible to have an error in radius and an error in speed but no error in SMA. The relation-

ship between the radius and speed error for zero SMA error is shown in Eq. (6), which was ob-

tained by setting 8a to zero in Eq. (5).
& =-L5v. (6)
v

For LEO cases, the ratio /v is on the order of 1000. Thus a one meter per second down-track
velocity perturbation must be balanced by a —1000 meter radial position perturbation if SMA is

to be maintained.

Position and velocity coordination affects flight-path angle in manner similar to that for the

SMA. The flight-path angle, y, is the complement of the angle between the velocity vector, v,

5



and the position vector, r, and can be visualized as the angle between the velocity vector and a

plane perpendicular to the radius vector:

rvsiny=r-v (7)

The flight path angle is zero for a non-osculating circular orbit, which implies r-v=0.

It is useful to consider an orthogonal set of perturbations in the radial, along-track, and cross-

track directions, 8r,,8r,,8r., and their time derivatives, denoted by &v,,0v,,8v.. Figurel il-

lustrates the radial, along-track, and cross-track perturbations.

—m————
-
S~

or = SrRi + 8r,j + SrCIl

k= rxv/jexv] 8= Svgi+6v,j+8vck

/Orbital
Earth * Path

Figure 1: Radial, along-track, and cross-track perturbations.

In terms of the notation used above, 8r, ~&r, and for near-circular orbits, velocity deviation is
nearly all along-track, so that v, ~8v. In terms of these perturbations, a relationship between
deviations in along-track position, dr,, and radial rate, 8v,, for zero flight path angle may be

derived:

O=r-v
~ [F,0,0]' [SVR v, ,0v. ]+ [O,V,O]' [SrR 07, ,0r; ] ®)

=rdv, +vor,



Eq. (8) reveals that if y is held to zero to preserve the nominally zero flight-path angle, then a

change in along-track position, dr,, must be compensated by a change in radial velocity:

ds, = —KSr, : 9
r

The same rule-of-thumb ratio of approximately 1000 to 1 seen for radial and speed error correla-
tion for zero SMA error shows up again in Eq. (9) for the relationship between along-track posi-
tion and radial rate for zero flight path angle deviation. A one meter per second perturbation to

radial velocity must be balanced by a —1000 meter change in down-track position, if near-zero

flight-path angle is to be maintained.

Effects of Poor Semi-Major Axis Knowledge

Along-track error growth. A semi-major axis error reflects a period error (Eq. (2)) and the satel-
lite will complete more or less than one actual revolution during its nominal period than pre-

dicted. For near-circular orbits, the resulting along-track error is
or, =—v(t/T,)8T,, (10)

where the negative sign convention recognizes that if the actual period is less than nominal, the
satellite ends up farther along in its orbit than nominal, which is taken to be a positive along-

track error. Setting ¢ = T}, in Eq. (10) gives the along-track error per revolution:
dr, =—v8Tp, (11)

Substituting Eq. (2) into Eq. (11), and assuming the velocity to be the circular orbit velocity, re-

sults in Eq. (12):

&r, =-3nda, (12)



which leads to a common rule of thumb tor along-track error growth per orbit revolution, i.e. the

. . . . . - . D
along track error per revolution is equal to minus ten times the semi-major axis error”.

Maneuver execution errors. The performance of a proper orbital maneuver is affected by tar-
geting error, which is usually dominated by local SMA error, and imperfect execution of the tar-
geted maneuver. Maneuver execution error may be due to inaccurate measurement of the veloc-
ity change or the duration of the maneuver, depending on execution approach, as well as im-
proper maneuver attitude and an imperfect thrust “tailoff” model. In the case of an instantaneous
or short maneuver, there is no appreciable change to the position error, and any along-track ve-
locity execution error will not be balanced by a corresponding radial position error, and will re-

sult in a semi-major axis error per Eq. (6).

Covariance matrix propagation. A less familiar example occurs in the problem of initializing
the covariance matrix for a sequential orbit determination filter that uses Cartesian coordinates.
Sequential state determination provides a current running estimate, but has the feature that only a
portion of the state is typically observable when using the measurement set available at current
time. The filter retains the history of past measurement processing as an estimate of the uncer-
tainty of the state in the form of a variance/co-variance matrix that must be initialized. The ini-
tial covariance matrix should reflect the uncertainty in the initial state vector. The state and its
uncertainty (in the form of the covariance matrix) have to be propagated for some time before the
first measurement becomes available. As a result, the initial covariance matrix must reflect the
proper uncertainty in SMA and flight path angle. Egs. (6) and (9) may be used to establish ra-

dial, speed, radial-rate and along-track variances and associated co-variances.



Figure 2 illustrates the effect of the initial covariance matrix on propagation. The matrix shown

has units of m and m/s and the rows and columns are r,,7,,7.,v,.v,,and v.. The initial covari-

ance shown on the plot was propagated without process noise, in a circular low Earth orbit
whose period is 5828.5 seconds to produce the figure. The initial value of the SMA uncertainty
(computed using Eq. (16) shown in the next section) is given at the top of each plot. The upper
subplot shows overall error growth when the error in radius matches the error in speed per the

rule of thumb (1000 m radial error per -1 m/s speed error). The lower subplot shows error
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Figure 2: Comparison of covariance propagation with matched and unmatched SMA
and flight-path angle relationships



growth for unmatched errors one might expect from some GPS point solutions. The 100 m ra-
dial error (smaller than the 1000 m radial error in the upper matrix) cannot compensate for the
I m/s speed error and results in along-track error growth that is about double that of the matched
case, shown in the upper subplot. Either the 1 m/s error must be reduced to 0.1 m/s or the radial

error must be increased to 1000 m to achieve reduced along-track error growth.

SIMPLE FORMULAS FOR SEMI-MAJOR AXIS UNCERTAINTY

This section illustrates some simple formulas and charts that relate the statistical variance of the
Cartesian states to the semi-major variance. Modification of these formulas for relative naviga-

tion applications is also discussed.

Absolute State Semi-major Axis

For a Cartesian state vector X = [rT, vT], a first order approximation that relates changes in the

state away from a nominal value (denoted by the subscript 0) to changes in the SMA is given by

oa
~-a, ~— -X,). 13
a-a, axmu(x xo) (13)
For
da r’ov’
A(xa)=amo =2a2[7"[] R (14)

where the partial derivative has been evaluated assuming a two-body potential, the error variance

of the SMA in terms of the state error covariance is
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Efla-a,)'J= E[a(x, Xx - x, Xx-x, ) t(x, )] )
o-.:l (xu ) = A(xu )Px A(xu )T
[n deriving Eq. (15), Egs. (13) and (14) have been used, the symbol “E” denotes the expectation

operator, and Py is the state error covariance matrix. The following simplification of Eq. (15),

valid for near-circular orbits may be found in Reference 2:

, T T,\
o,=2|c: +2/ 2 p,, 0,0, +| L]0, . (16)
R 27.t RYI R 1 2n 1

This equation may also be derived from Eq. (5), using Egs. 2 and 3.

In Eq. (16), p,,, denotes the correlation coefficient between radial position error and in-track

velocity error, and o, and o, denote the radial position error and in-track velocity error stan-

dard deviations, respectively.

Eq. (16) may be used as a design and analysis aid, especially in graphical form. Also, either
Eq. (15) or Eq. (16) is useful as a “figure of merit” for orbit determination filters. Figure 3
shows one means of graphically representing Eq. (16) for LEO scenarios. Figure 3 depicts sev-
eral families of relationships among the principal contributors to SMA uncertainty for a LEO
mission. Each family of curves illustrates a subset of the range of radial position and along-track

velocity errors that generate the same SMA error, from 0.1 meter to 1000 meters.

Along the main diagonal of the chart, the families split based on the value of the correlation coef-
ficient. The correlation coefficient captures the deterministic relationship implied among the ra-
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dial position and down-track velocity errors by Eq. (6). To the extent that these errors are prop-
erly coordinated, a given level of knowledge about either one implies some degree of knowledge
about the other. The coefficient is negative because of the negative relationship stated by
Eq. (6). The region of the plot in which the families split corresponds to a “sweet spot” of proper

coordination among position and velocity.

At one extreme, radial position and down-track velocity errors are completely uncorrelated
(p =0), and the SMA error is bounded below by the lower of its corresponding radial position
and speed errors. For example, no matter how good position knowledge gets, SMA knowledge
will be no better than about 100 meters if speed knowledge cannot be improved beyond about
0.05 meters per second. However, if radial position and speed errors are properly coordinated
(via Eq. (6)), the SMA knowledge can be dramatically improved, because a corresponding in-
crease in the correlation among radial position and down-track velocity errors is possible. For
example, using the “1000 to 1” rule of Eq. (6), a radial position error of 100 meters should corre-
spond to a down-track velocity error of about —.1 meters per second. As Figure 3 shows, this
combination could correspond to an SMA error of about 100 meters if the correlation coefficient
is —.9, but would only correspond to an SMA error of just under 300 meters if the correlation co-
efficient is near zero. A coefficient near the value one would expect if Eq. (6) were nearly ex-
actly satisfied (~ —=0.99) would give an SMA error on the order of 30 meters. In the limit, the
éoefﬁcient reaches —1, the horizontal and vertical branches on the plot disappear, the random
variables become simple deterministic variables, and the linear relationship of Eq. (6) is depicted

as a straight line from lower left to upper right.



S<ma (Semi-major Axis Uncertainty) [meters] for orbit period = 90 min
ol /4= °'2R + 2T 20p o, 0, * (Tp/z:n)zo'v'

1

10 e e e e
p = -.99 (Theoretical)
p = -9 (Good Nav Filter)
o p=-5 .
0 _prOoorfaviled a0 -
3 300
5 00 .
é : i t
3 . 0 !
5 402 P !
z i LSSt R : E
% : s ‘ { ) | |
2 . e E T /o ; ! ! .
g 10 R PRI A { ! i :
S i S / } ‘ | ]
- BRI A ‘ : ) {
g e 23 PR / | ‘« 4
107} T T R | '
: o i i 3 .‘ ‘ :
: SR i P o | ]
‘ > j i : \ i
10'5< it 1 | L ’ P . . ; ;
10° 107 10" 10° 10’ 10° 10°

a, (Radial Position Uncertainty) [meters]
R

Figure 3: Semi-major axis uncertainty relationships for a typical low Earth orbit.

The two rules-of-thumb of Eqs. (6) and (9) may be used to specify the in-plane diagonal ele-
ments of the initial covariance. Eq. (6) may be used to specify the partition of the covariance
corresponding to along-track position and radial velocity errors that are consistent with the SMA
error of the initial state. For near-circular orbits, the remainder of the in-plane covariance parti-
tion may be specified using Eq. (9) to specify radial velocity and down-track position errors that
are consistent with the approximately zero flight path angle of the initial state. When using both
rules to specify an initial covariance, an appropriate selection of the correlation coefficient
should be made, as discussed above. If Egs. (6) and (9) have been used, a reasonably conserva-

tive choice of correlation coefficient is —.9.
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Relative State Semi-major Axis

Relative SMA., i.e. the difference in SMA between pairs of vehicles, is of interest for rendezvous
and formation flying missions. During rendezvous, a “chaser” will execute maneuvers to ap-

proach target spacecraft. Denoting the chaser SMA by ac, and the target SMA by a,, the relative

SMA is

=a_—a,. (17)

rel c i

Since a. is a function of the chaser state x. and a, is a function of the target state Xx,, in deriving
the uncertainty of the relative SMA it is useful to define a state consisting of both the chaser and

target states: X'= [ch x,T]. Then, as in Eq. (13), a perturbation in the nominal relative SMA may

be approximated by

a,, —a "z-ag:—'mu(x—xo). (18)

q

Using the notation of Eq. (14), the partial derivative is evaluated as follows:
da,,

T T T T
= 2ac2 SCT,XS— ,—2a,2 ! ,1’—
2 S r.,op M

Alx,)=[4.(x,)- 4,(x,)]

(19)

:*l‘
tad

x=x,

The covariance of the chaser/target state, P, may be partitioned into chaser-only and target-only

covariances (P, and P)), and their cross-covariance matrices (Pcr):

o [P P 20)
e BT

!

Using Egs. (19) and (20) in Eq. (15) results in the following:
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FLIGHT PERFORMANCE SURVEY

A number of different GPS receivers have been flown on Space Shuttle Orbiter flights, including
a mix of GPS units, some which filtered measurement data and some which extracted the state
deterministically from the data. Some of the GPS units operated in Standard Positioning Service
and others in Precise Positioning Service modes. Both absolute state and relative state perform-
ance have been evaluated. Particular interest has been given to the semi-major axis performance
of the GPS receivers and any associated filtering algorithms, to determine if the GPS has the po-

tential to replace or augment rendezvous navigation sensors.

Absolute State Flight Performance

Twenty-one sets of absolute-state flight data results are shown in Table 1, and in Figure 4, the
flight data are overlaid on a copy of Figure 3. The data used in constructing these tables was ex-
tracted from Refs. 3-6, and from various internal documents. In some cases, either velocity or
SMA data were not available. In general, the flight data indicate that semi-major axis is often
not determined very accurately, typically due to a poor velocity solution and/or a lack of proper
filtering to provide good radial and speed error correlation. Note that the flight data are all from
LEO missions, and have periods varying by a few minutes from the nominal period of

90 minutes used to construct the figure.

Nearly all the flight data lie above the diagonal region in Figure 4 previously described as the
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“sweet spot” for proper coordination of position and velocity. This indicates that, for these
cases, GPS-derived velocity is not as good as GPS-derived position, so that GPS is not able to
achieve good SMA accuracy. Cases J and B happen to lie in the “sweet spot,” but Table | re-
veals that their SMA accuracy corresponds to a near-zero correlation coefficient. Thus, these

cases are not taking advantage of the potential improvement in SMA to the order of 10-30 m

they could otherwise achieve.
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Figure 4: Semi-major axis uncertainty flight data results overlaid on SMA uncer-

Cases W, X, Y, and Z are point solutions produced onboard TOPEX satellite, during which Se-

lective Availability (SA) and Anti-Spoofing (AS) were in various states of activation, as Table 1
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describes. Although TOPEX's 112 minute period is approximately 25% longer than the nominal
period used to produce Figures 3 and 4, its SMA is only 13% larger, an error which is not sig-
nificant on the logarithmic scale the figures use. With this caveat in mind, it appears that the
SA/AS-free case, Case W, actually has a velocity that is good enough to produce an SMA error
on the order of 30 m. However, its position solutions are not quite accurate enough, nor perhaps

is its correlation of position and velocity, as Table 1 indicates its SMA error due be over 100 m.

To establish performance, flight data were compared to best estimated trajectories (BETSs), gen-
erated with various procedures. Most of the BET procedures have been verified to be accurate to
about 30 meters RMS in position and a few hundredths of a meter per second RMS in velocity’.
The Post-flight Attitude and Trajectory History (PATH) BET is probably less accurate in posi-
tion, but more accurate in velocity, than the Wide Area Differential GPS (WADGPS) BET. (The
PATH accuracy is specified to be on the order of 200 meters in position and 0.2 m/s in velocity
RMS in the worst axis, but it is generally believed to be much better.) In some cases, filtered
position data from an independent, PPS-capable GPS receiver was used as the BET. These
BETs are believed to be slightly more accurate in position than the WADGPS BET is, and com-
parable to the PATH BET in velocity. The SLR+DORIS BETs used for the TOPEX data are

accurate to a few cm in position, and a few tenths of a mm/sec in velocity.
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Relative State Flight Performance

NASA has jointly performed two relative GPS (RGPS) navigation flight experiments with the
European Space Agency (ESA)3'6. During these experiments, a near-realtime relative GPS Kal-
man filter processed pseudorange data from GPS receivers aboard the Space Shuttle and a free
flying satellite deployed and retrieved by the Shuttle. This filter was designed to estimate com-
mon biases affecting GPS receivers aboard two co-orbiting spacecraft tracking the same GPS
satellites, and was expected to approach pseudorange (not carrier phase) differential type per-
formance when measurements from at least four common satellites were processed. Recently,
both ESA and the National Space Development Agency of Japan have performed further relative

GPS experiments®®. STS-80 data have also been processed at the University of Colorado at

Boulder (CU)'°. Table 2 summarizes relative state performance from the various RGPS experi-

ments.

The RGPS results may be compared with Table 3, which shows typical performance of the ex-

isting Shuttle rendezvous navigation system. The existing system consists of a rendezvous radar

Table 3

PERFORMANCE OF EXISTING SHUTTLE RENDEZVOUS SYSTEM

Position (m) Velocity (m/s) SMA (m)
Radial | In-track | X-track RSS Radial | In-track | X-track RSS
15.1 3.6 1.7 15.6 0.023 0.015 0.008 0.029 49.4

that provides range, range-rate, azimuth and elevation measurements to an extended Kalman fil-
ter that also utilizes acceleration data from an inertial measurement unit. The data were derived
by comparison of the downlinked Shuttle relative navigation data to a laser-based BET produced

after the flight. Although the relative GPS position accuracy shown in Table 2 is somewhat bet-
20



ter than the relative position accuracy of the Shuttle’s existing system shown in Table 3. the
GPS-based relative SMA is more than twice as inaccurate. The performance difference is pri-

marily due to poorer relative velocity estimates from the RGPS filter, but also due to poorer cor-

relation among position and velocity errors.

Another approach to GPS relative navigation is to directly difference the solutions from two GPS

Table 4

STATE VECTOR DIFFERENCING PERFORMANCE FROM STS-80

Sol Measure- Position (m) Velocity (m/s) SMA (m)
Det/Filt ment Radial | In-track | X-track RSS Radial | In-track | X-track RSS
dd C/A, C/IA 138.0 51.7 57.0 158.1 1.699 0.949 0.550 2.022 | 1706.0

receivers, rather than process the measurement data from both receivers in a single Kalman filter
as described above. Such an approach is obviously much simpler, but does not necessarily re-
move the common error sources. As Table 4 shows, the state vector differencing performance
data from STS-80 show significantly worse performance than the filtered results Table 2 pres-

ents.

However, if the receivers can be operated under the Precise Positioning Service (PPS), with dual-
frequency P/Y-code measurements, most errors larger than a few meters are removed. Under
such circumstances, it could be feasible to perform GPS relative navigation using state vector
differencing. Absolute state flight performance was used to predict relative state accuracy for a
variety of GPS receiver combinations with deterministic vs. filtered solutions based on C/A and
P/Y-code measurements (Table 5). The values in Table 5 were obtained by computing the root

sum squares of the overall absolute state performance summarized at the bottom of Table 1, as-
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Table 5

STATE VECTOR DIFFERENCING PERFORMANCE SURVEY
Sol Measure- Position {(m) Velocity (m/s) SMA (m)

Det/Filt ment Radial | In-track | X-track RSS Radial | In-track | X-track RSS

dd | CACA | 921 | 600 | 670 | 1287 | 1.0585 [ 0703 | 0.703 | 1450 | 14453

df | CACA | 837 | 522 | 591 | 1150 | 0872 | 0582 | 0.589 | 1.203 | 1076.0

L9f L CAY | 652 | 425 | 475 | 912 | 0746 | 0498 | 0498 | 1026 [ 10233
At | CACA L 743 | 430 | 498 | 993 | 0639 | 0429 | 0448 | 0891 | 4759

A CAY ) 827 f 306 | 353 | 704 | 0453 | 0305 | 0317 [ 0631 | 3403
f f Y Y 4.6 38 3.0 6.7 0.039 0.041 0.024 0.061 715

suming that the errors in the two receivers are uncorrelated (i.e. P, =0). The results for absolute
states computed deterministically by the receivers, and absolute states resulting from onboard
orbit determination filters are denoted “d” and “f,” respectively, in the first column. The as-
sumption of uncorrelated errors is conservative, corresponding to the case in which the receivers
are tracking zero common satellites. However, only the case in which a/l satellites tracked are

common will reflect substantially better accuracy.

Although filtering the data helps significantly, state vect(;r differencing, even if one of the two
receivers is P/Y-code capable, is not competitive with either the RGPS filtering approach or the
existing Shuttle rendezvous system capabilities (viz. Tables.2 and 3). Relative state accuracy,
obtained by differencing two absolute states from GPS receivers which filter P/Y-code data,
(shown in the last row of Table 5) was more accurate than RGPS filtered C/A code performance
(Table 2), and comparable to existing Shuttle rendezvous performance (Table 3). There are no

known flight results from an RGPS-type filter using P/Y-code measurements.

None of the flight data results presented utilize carrier phase data, which is commonly used in

static surveying applications to achieve centimeter-level relative positioning. Carrier phase

38
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measurements are analogous to a very accurate pseudo-range measurement, if the measurement
is obtained as an accumulation of phase, or equivalently range, change. Based on Figure 3, it
would appear that even if position were known to better than | centimeter, SMA knowledge
could not be improved over existing levels of performance unless both velocity knowledge were
obtained to the 0.1 to I mmy/sec level, and proper correlation between position and velocity errors

were achieved.

CONCLUSION

Semi-major axis accuracy affects orbital targeting and other functions dependent on state propa-
gation and prediction. On-orbit GPS absolute and relative SMA Shuttle flight performance re-
sults achieved to date, though promising, have often been less than desirable and at worst inade-
quate. The lack of good semi-major axis knowledge is primarily due to a poor velocity solution
and a lack of proper filtering to provide good radial and speed error correlation. Use of carrier
phase data does not appear likely to improve this situation, unless it is accompanied by proper
filtering that is tuned to take advantage of orbital dynamics. Such a filter would create the neces-
sary state correlations that accurate SMA knowledge implies. Several simple equations, rules of
thumb, and charts concerning the semi-major axis used for back-of-the envelope orbit determi-
nation analysis have been presented to support future orbital navigation performance analysis. It
is hoped that this work will stimulate innovations that will lead to better orbital GPS orbit deter-

mination performance.
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